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a b s t r a c t

The interest in understanding fundamental mechanisms underlying chromatography drastically
increased over the past decades resulting in a whole variety of mostly semi-empirical models describ-
ing protein retention. Experimental data about the molecular adsorption mechanisms of lysozyme on
different chromatographic ion-exchange materials were used to develop a mechanistical model for the
adsorption of lysozyme onto a SP Sepharose FF surface based on molecular dynamic simulations (temper-
ature controlled NVT simulations) with the Amber software package using a force-field based approach
with a continuum solvent model. The ligand spacing of the adsorbent surface was varied between 10 and
20 Å. With a 10 Å spacing it was possible to predict the elution order of lysozyme at different pH and to
confirm in silico the pH-dependent orientation of lysozyme towards the surface that was reported earlier.
ysozyme
etention volume prediction
ibonuclease A

The energies of adsorption at different pH values were correlated with isocratic and linear gradient elu-
tion experiments and this correlation was used to predict the retention volume of ribonuclease A in the
same experimental setup only based on its 3D structure properties. The study presents a strong indica-
tion for the validity of the assumption, that the ligand density of the surface is one of the key parameters
with regard to the selectivity of the adsorbent, suggesting that a high ligand density leads to a specific
interaction with certain binding sites on the protein surface, while at low ligand densities the net charge

porta
of the protein is more im

. Introduction

Chromatography is the most important technique in down-
tream processing of biotechnological products. Although is has
een used extensively over the past decades, the understanding
f the underlying fundamental mechanisms is still limited, espe-
ially when it comes to adsorption mechanisms on a molecular
evel. Studies about the effects of mobile phase composition on
he retention behaviour of proteins – especially in ion-exchange
hromatography – resulted in semi-empirical models aiming at the
rediction of retention time under changing experimental condi-
ions. One of the most popular models in this regard is the steric

ass-action model (SMA) by Brooks and Cramer [1], followed by
ther models, such as the available area model by Bosma and Wes-
elingh [2,3] or the stoichiometric displacement model by Rounds
nd Regnier [4–6]. All these models require the determination of

rotein and adsorbent specific parameters. Although these param-
ters are all empirically defined, they have an underlying physical
elevance. For example, the SMA model uses the three parameters
onic capacity, describing the number of available ligands in the

∗ Corresponding author. Tel.: +49 721 608 6236; fax: +49 721 608 6240.
E-mail address: florian.dismer@kit.edu (F. Dismer).

021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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nt than the actual charge distribution.
© 2010 Elsevier B.V. All rights reserved.

adsorbent resin, the steric hindrance factor, describing the amount
of space the bound protein blocks on the adsorbent surface, and
the characteristic charge, describing the number of interaction sites
between the protein and the adsorbent surface.

The predictive power of the SMA model – as well as most other
approaches – is based however on the underlying assumption that
the binding mechanism remains unchanged [7–11]. With a change
in the mobile phase pH, the charge distribution on the surface of
the protein changes, which in return might change protein surface
interactions, specifically the site on the protein mainly responsi-
ble for binding [12]. As models fail to account for changes on the
protein molecular level, there are approaches such as quantita-
tive structure–property relationship (QSPR) to include these effects
[13–15]. These approaches use structural descriptors together with
a statistical evaluation of experiments to establish a link between
protein properties and the retention behaviour. Yang et al. [13]
for example treated proteins at different pH values as distinct
molecules in order to allow retention time prediction at different
pH. Nevertheless, the training of this model required a data set of

>250 experiments.

Besides these semi-empirical approaches, there are also mech-
anistical models available to describe protein retention on
ion-exchange materials. Roth and Lenhoff [16] investigated the
adsorption of lysozyme onto a charged surface in silico by calculat-

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:florian.dismer@kit.edu
dx.doi.org/10.1016/j.chroma.2009.12.061
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ng the electrostatic and van der Waals energies for the interaction
lready in 1993. Due to the limitations in the computational speed
t that time, they used a sphere representation of lysozyme with
he net charge located at the center of the sphere for most of their
alculations. In their studies, this showed to be a valid assumption,
llowing them to demonstrate the effects of ionic strength on the
ffinity of lysozyme. In 1991, Stahlberg et al. [17] published a paper
ealing with the relationship between the Gibbs free energy and the
etention factor for proteins on charged surfaces. In this work, the
nteraction between the protein molecule and the adsorbent sur-
ace was simplified by using two charged surfaces differing in their
harge density. In 1992, he extended his model by addition of van
er Waals forces [18]. In 1999, he wrote a detailed review article
19] about retention models in ion chromatography, mainly focus-
ng on small molecules, but also including a chapter about charged

acromolecules. With the increase of computational speed dur-
ng the last years it is now possible to perform simulations of the
ynamics of proteins in solution rather than static calculations. This
evelopment clearly has a potential to reach a higher level of under-
tanding and insights into protein–surface interactions [20–24]. In
his paper modelling approaches were built on a detailed mechanis-
ical understanding of the adsorption behaviour of lysozyme onto a
P Sepharose FF adsorbent surface at varying pH determined exper-
mentally and published earlier [12,25]. These experimental results

ere used to construct an adequate adsorbent surface model of SP
epharose FF in silico to perform molecular dynamic simulations
nd to access adsorption energies at different pH and for different
roteins.

In the presented approach, the interaction between an adsorber
urface (SP Sepharose FF) and two proteins (lysozyme and ribonu-
lease A) was characterized by MD simulations. The simulations
ere temperature controlled (NVT type simulations) and with-

ut boundary conditions, meaning that the surface had a limited
ize and was not periodically repeated. The force-field used for the
imulations was the ff03 force-field developed by Duan et al. [26],
hich is a modified version of the ff99 force-field by Wang et al.

27], both general force-fields for MD simulations with proteins and
ucleic acids. All simulations were performed using a generalized
orn continuum solvent model initially implemented by Onufriev
t al. [28]. In a first step, a simplified model for the adsorber sur-
ace was constructed, meaning that the polymer backbone (namely
garose) was not included in the model. The charge carrying ligands
f the adsorbent were designed according to their chemical struc-
ure. To fix the ligands in space, which is necessary for building
surface-like structure, a positional restraint energy in the form

f:

restraint
i = k(�xi)

2 (1)

as applied to i atoms, where k is the weight of positional restraint
nergy (which was set to +1.0 kcal/(mol Å)) and �x is the differ-
nce between the actual Cartesian coordinates of the restrained
tom i and its reference position. For each ligand molecule, the
tom that would normally be covalently attached to the poly-
er backbone of the adsorbent surface and the next two atoms
ere restrained, and the above described restrained energy was

pplied to each of these atoms throughout the whole simulation.
lthough the surface of a real adsorbent particle would probably
ot be planar from a macroscopic point of view, on the scale of
single protein molecule this assumption should be acceptable.

his surface model allows for a certain flexibility of the ligands
ue to their chemical structure, accounting for experimental find-
ngs by DePhillips et al. [29] who found a significant influence of
he spacer length on the retention behaviour of proteins. Three
ifferent ligand spacings were chosen: 10, 15 and 20 Å(defining
he distance to the next ligand in x and y direction in the surface
lane). After generating the surface, it was a highly ordered struc-
gr. A 1217 (2010) 1343–1353

ture. For the starting structure of the surface to be more realistic
and to validate whether or not the starting conformation of the
surface had any influence on the course of the simulation, a short
MD simulation was run with the surface to generate three different
starting structures for the actual MD simulation with surface and
protein.

In a second step, these three surfaces were used to generate
three surface–protein ensembles. The center of mass of the pro-
tein molecule (either lysozyme or ribonuclease A) was brought
above the center of the surface, and the distance between the
protein and the nearest ligand was adjusted to 5 Å. A MD simu-
lation was performed (20 ps) for each ensemble in order to extract
the different energies of the ensemble: bond-, angle-, dihedral-,
van der Waals-, electrostatic- and restraint-energy. To be able to
calculate the energies caused by adsorption for different protein
orientations, the MD simulations were repeated for altogether 62
different, systematically varied protein orientations to screen the
whole protein surface for possible interaction sites (for detailed
information see the materials and methods section). For such a
screening it was of great importance, that (a) the protein does
not change its orientation in the course of the simulation, and (b)
the protein does not change its distance to the surface. Therefore
the backbone atoms (imido-N, C� and carbonyl-C) of the pro-
tein were restrained in the same way as described above for the
surface ligands. The MD simulation results for all three different
starting structures for each protein orientation were compared
to determine the effects of the starting conformation on the MD
simulation. The different energies were plotted versus the pro-
tein orientation (defined by two rotation angles) into interaction
plots which revealed favourable and unfavourable binding sites and
were correlated with experimental data about binding orientations.
Average electrostatic interaction energies were calculated from the
gathered data and correlated with retention experiments. All MD
simulations were performed for different pH values. To estimate the
effect of the pH on the charge distribution and net charge of the pro-
tein, protonation states of all charged amino acids were calculated
and considered in the MD simulations. An empirical correlation
between electrostatic interaction energy and retention behaviour
was then used to estimate the retention behaviour of a second
model protein (ribonuclease A) only based on the 3D structure of
the molecule.

2. Materials and methods

2.1. Isocratic and gradient elution experiments

Hen egg white lysozyme (L-6876) and ribonuclease A from
Sigma (St. Louis, MO, USA) was dissolved in the respective work-
ing buffer at various concentrations. All salts including 1 M NaOH
for pH adjustment were purchased from Merck (Darmstadt, Ger-
many). The adsorbent material analyzed (SP Sepharose Fast Flow)
was obtained from GE Healthcare (Uppsala, Sweden). To deter-
mine the pH-dependent strength of interaction of lysozyme with
SP Sepharose FF, retention experiments were conducted. Lysozyme
solutions were prepared at pH 5–12 using 10 mM citrate buffer
(pH 5), phosphate buffer (pH 7), carbonate buffer (pH 9), glycine
(pH 11) or NaOH (pH 12). The columns used were 1 ml prepacked
columns (Atoll, Germany), separation was performed on an Akta
system purchased from GE Healthcare (Uppsala, Sweden). Sample
loading (240 �l, 3 mg/ml lysozyme) was followed by two col-
umn volumes wash with buffer A (10 mM, buffer type depending

on pH). The elution was done with a linear gradient from 0%
to 100% buffer B (10 mM buffer + 0.5 M NaCl) over 30 column
volumes. The conductivity at the point of elution was used to
determine the strength of interaction between adsorbent and pro-
tein.
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.2. Adsorber surface construction

The chemical structure of the ligand is available on the home-
age of the manufacturer (http//www.gehealthcare.com):

Agarose–OCH2CHOHCH2OCH2CH2CH2CH2SO3
−

In a real adsorbent particle, the ligand is coupled to the agarose
atrix via an oxygen atom. Due to the fact, that the polymer
atrix was not included in the model, an additional C-atom was

dded to represent the coupling point. The 3D structure of the
igand was created using ANTECHAMBER, a tool provided with
he AMBER 9 package, a commonly used package for molecular

echanics [30,31]. The ligands where then distributed evenly to
ive a quadratic surface of at least 100 Å size in both directions
the actual size slightly changed with different ligand spacings),
hich is approximately 2-times the size of lysozyme. Three differ-

nt spacings between ligands were used to generate three different
urfaces: 10, 15 and 20 Å (the spacing defines the distance to the
ext ligand in x- and y-direction within the surface plane). To keep
he ligands in a layer and to avoid a breakdown of the surface during
he simulation, the Cartesian coordinates of the first three atoms of
ach ligand (C3, O and C1) were restrained by a harmonic potential
f the form mentioned above (see Eq. (1) with k = +1.0 kcal/(mol Å))
uring all simulations. This means that only the part of the ligand,
hat would be attached to the polymer backbone of the adsorbent
s fixed in space, but the part carrying the charge (which is the
art interacting with the protein) remains flexible, resulting in a
ime-dependent charge distribution of the surface.

.3. Protein structure preparation

For the dynamic simulations with lysozyme (PDB-ID: 132L)
32,33] and ribonuclease A (PDB-ID: 1FS3) [33,34] at different
H values, the internal pKa of lysine, arginine, histidine, glu-
amic acid and aspartic acid where calculated using the PCE
protein continuum electrostatics) web tool [35]. The charge of
ach amino acid was then determined individually using the
enderson–Hasselbalch equation:

H = pKa + log
c(A−)
c(HA)

(2)

nd assigned to the residues using the LEAP tool (also part of the
MBER 9 package). Before the protein structure was used, a short
nergy minimization (1500 iteration steps) was performed with
continuum solvent model (generalized Born solvation model,

mber parameter: igb = 5, for details read [28]) to avoid general
roblems with the energetics of the protein structure, such as close
ontacts between atoms, abnormal torsion angles, etc.

.4. Ensemble construction and simulation design

To get the final ensemble of adsorbent surface and protein
olecule, the protein structure was added onto the surface, with

he center of mass of the protein being above the center of the sur-
ace. The distance between the surface and the protein was adjusted
o 5 Å between the protein and the closest SO3

− group (which in
ost cases belonged to one of the ligands in the center of the sur-

ace). This was done to keep the distance of the protein to the
urface equal in all simulations independent of the orientation of
he protein. For each protein, 62 different orientations in respect
o the adsorbent surface were sampled. This was achieved by step-
ise rotating the protein by 30◦ around the y- (x- and y-axis lie
n the surface plane) and the z-axis (perpendicular to the surface
lane) to screen the whole surface of the protein for possible inter-
ction sites. After each rotation step, the protein was centered and
djusted to the correct distance. To avoid a change of the orienta-
ion during the simulation and to avoid a protein movement away
r. A 1217 (2010) 1343–1353 1345

from the surface, the coordinates of the protein backbone (imido-
N, C˛ and carbonyl-C) were restrained with the same energy as the
ligand base atoms (see above), and thus the protein was kept at its
position, but still having flexible side chains and flexible adsorbent
ligands. Prior to the actual simulation run, the energy of the whole
ensemble was minimized for another 1500 steps by using a contin-
uum model (generalized Born solvation model, Amber parameter:
igb = 5, for details read [28]) to avoid close contacts between the
side chains and the ligands which might lead to atypically high
energies in the simulation.

2.5. Simulation parameters and computational equipment

The calculations were all done on 64 cores of a HP XC6000 par-
allel computing cluster with Intel Itanium2 processors with the
SANDER tool (also part of the AMBER 9 package).

The force-field used was the ff03 force-field developed by Duan
et el. [26], which is a modified version of the ff99 force-field by
Wang et al. [27]. All performed MD simulations were of the NVT
type, meaning that the number of atoms, the volume and the tem-
perature were kept constant in each simulation run. A Langevin
temperature control was used [36,37] which uses imaginary atom
collisions to control the velocities of the atoms in the system. The
collision frequency was set to 1 ps−1. Bond interactions including
hydrogen atoms were omitted to reduce the computational cost.
All simulations were performed using a generalized Born contin-
uum solvent model initially implemented by Onufriev et al. [28].
The salt concentration of the continuum was set to 20 mM which
influences the dielectric constant of the continuum. If not stated dif-
ferently, the simulation time was 20 ps with time steps of 0.002 ps.
Periodic boundaries were not used, which means that the surface
had a fixed size and was not periodically repeated. The cut-off
distance was set to 60 Å to include long-ranged electrostatic inter-
actions, and no correction term was added for interactions beyond
the cut-off range. The following energies were calculated in each
MD run: bond-, angle-, dihedral-, van der Waals-, electrostatic- and
restraint-energy. As mentioned above, part of the ligand atoms and
the protein backbone were restrained with a harmonic potential of
+1 kcal/(mol Å).

2.6. Snapshot sampling and averaging

All simulations were performed in triplicates. For MD simula-
tions, the course of the simulation may depend on the starting
conformation of the system (see Section 3 and thus for the evolution
of the different energies throughout the simulation. To evaluate the
effect of the starting structure on the energies calculated during
the simulation, three different starting structures for each ensem-
ble were generated. A dynamic simulation of only the surface was
done first with a total time of 100 ps starting with a highly ordered
surface model (see Fig. 1).

Three different snapshots of the surface were taken between
20, 60 and 100 ps simulation time to generate three different sets
of ligand coordinates (with a maximum period of simulation time
between the snapshots to allow for a bigger difference between the
structures) for different conformational states of the surface. These
different surfaces were used to generate the starting structure of
three different ensembles per protein orientation, and the ener-
gies of all three simulations were averaged later. In some cases,
the restraint energy (the energy actually needed to keep the lig-
ands and the protein at their position) for the ensemble simulation

for one snapshot was significantly higher for all 62 orientations
than for the other two snapshots. As this is a strong indicator for
deeper problems with the energy of the system (e.g. close contacts
between protein and ligands to the ensemble construction proce-
dure). Only the other two corresponding snapshots were used to
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ig. 1. Plot of the total energy over simulation time for the initial simulation used to

alculate the average energies. To calculate the interaction ener-
ies, reference runs with only the surface and only the protein at
distinct pH were performed in triplicates and averaged. These

eference energies were then subtracted from the energies of the
nsemble simulation according to:

Adsorption = EEnsemble − EProtein − ESurface (3)

The first 10 ps of each simulation were considered to be an equi-
ibration phase, and were thus not used in the calculation of the
verage energies.

For the correlation of electrostatic interaction energies with
etention behaviour, a few assumptions were made:

. Each protein orientation showing a negative electrostatic inter-
action energy (which means that there is a net attraction
between protein and adsorbent) contributes to protein binding
and thus needs to be considered when calculating the average
interaction energy.

. Each protein orientation showing a positive electrostatic interac-
tion energy and thus a net repulsion between protein and surface
does not contribute to the average interaction energy (occurred
only at pH 12, 10 Å ligand spacing).
. The more negative the interaction energy of an orientation is, the
stronger is the contribution the average interaction energy. The
general idea behind this is, that a protein with one strong binding
site, which is superior to all other binding sites shows a stronger
binding than a protein with many weak binding sites, even if the

ig. 2. Scheme of the data flow. By rotating the molecule consecutively around the y- an
- and z-angle. These coordinates are then used to plot the energies gathered in the simu
ate snapshots for the ensemble generation for the surface with 10 Å ligand spacing.

non-weighted average interaction energy is the same. Thus the
interaction energies for the individual orientations need to be
weighted before averaging.

The MATLAB 4 grid data method was used to interpolate ener-
gies with a stepsize of 5◦ which were then plotted according to
Fig. 2.

The weighting factor for a given orientation can be calculated
according to the Boltzmann distribution, which describes the prob-
ability of a certain orientation depending on its energy:

py,z = 1
Z

× e−ˇ×Eelec
y,z (4)

where py,z is the probability for a given orientation defined by
the two rotation angles y and z, Z is a normalizing factor, Eelec

y,z is
the electrostatic interaction energy of this orientation and ˇ is a
constant:

ˇ = 1
kB × T

(5)

where kB is the Boltzmann constant and T is the temperature. Z can
be calculated according to:
Z =
∑

e−ˇ×Ey,z (6)

Then an average electrostatic interaction energy Ē elec
y,z would be

the sum of the weighted electrostatic interaction energies over all

d z-axis the complete protein surface is sampled. Each orientation is specified by a
lations.
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ig. 3. Changes in the binding orientation of lysozyme on SP Sepharose FF based o
ocated between lysine 1 and lysine 33. With increasing pH, the molecule turned to

rientations that show Eelec
y,z < 0:

¯ elec =
∑

py,z × Eelec
y,z (7)

. Results and discussion

.1. Experimentally determined binding orientations

In a previous publication dealing with binding orientations of
ysozyme on different adsorbent surfaces under varying experi-

ental conditions [12] a binding mechanism for lysozyme on SP
epharose FF was proposed. This binding mechanism is illustrated
n Fig. 3.

For low pH the main binding site for lysozyme was located
etween lysine 1 and lysine 33, including altogether 4 positively
nd 1 negatively charged amino acid. With increasing pH the
ysozyme molecule turned towards a second binding site located
etween lysine 33 and lysine 116 also consisting of 4 positively

nd 1 negatively charged amino acid. The driving force for this re-
rientation was the change of charge distribution on the surface of
he protein. All amino acids located in the binding site have slightly
ifferent intrinsic pKa values and are thus loosing their charge at
ifferent pH. Also the N-Terminus is located in the first binding site

ig. 4. (A) Model of a SP Sepharose FF surface with a ligand spacing of 10 Å and a total size
ifferent ligand densities showing their flexibility during a simulation run (green = high fl
erimental data taken from Dismer et al. [12]. At low pH the main binding site was
a second binding site between lysine 33 and lysine 116.

and is the first amino acid that is deprotonated (already below pH
7). For a detailed explanation please refer to [12]. In the present
paper these experimental findings were correlated to the dynamic
simulation results and subsequently used to determine the most
realistic ligand spacing for the investigated systems.

3.2. Surface design and snapshot generation

Fig. 4A shows a model of the surface with a spacing of 10 Å. This
structure was used for the generation of three snapshots for the
ensemble construction and for reference simulations. The ligands
in the simulation are actually not bound to a surface, they are rather
just fixed in space and kept at their position by applying a restraint
energy. Fig. 4B shows RMS values for the ligand atoms which rep-
resent the average distance of an atom relative to its mean position
throughout a complete simulation, thus the higher the RMS value,
the more movement an atom made during the simulation. The first
three atoms (C3, O and C1) are the atoms that were restrained at

their starting Cartesian coordinates by the harmonic potential, rep-
resenting a covalent attachment to the surface. These three atoms
had the lowest RMS value of all (∼0.5 Å). With increasing distance
to these atoms, the RMS value increased. There was an obvious
connection between the ligand density and the flexibility of the

of 100 Å.SO3
− groups are colored in gray. (B) RMS values for ligand atoms for three

exibility, red = low flexibility).
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ig. 5. (A) Total energy for three independent simulations with three different star
he first and the third Snapshot of three individual simulations (15 Å spacing, pH 5
f the third simulation.

igands. For the 10 Å ligand spacing, the ligands slightly stabilized
ach other, resulting in lower RMS values. This stabilization was
ess prominent for increasing ligand spacing. The main reason for
estraining three atoms in space rather than one was to avoid a
80◦ rotation of the ligand facing into the ‘surface’.

Fig. 1 shows the proceeding for the generation of three different
ets of coordinates for the finale protein–surface ensemble. The first
0 ps of the simulation are considered to be an equilibration phase,

n which kinetic energy is added to the system to bring the simu-
ation to a temperature of 300 K. After the equilibration phase the
ata generation phase follows. In this phase three different sets of
oordinates of the surface were being extracted. The pictures below
he energy curve in Fig. 1 show that the three snapshots actually
epresent the same surface only with different conformations and
hat the surface remained intact throughout the whole simulation.

.3. Snapshot averaging

Fig. 5A shows the total energy for three different simulation
uns performed with three different snapshots (starting confor-
ations) of the same system (10 Å ligand spacing, pH 7, y = 0◦,
= 0◦). The data production phase begins after 10 ps. It was obvious

hat all three simulations fluctuated around a similar average total
nergy: −9257, −9222 and −9134 kcal/mol, although the course
f the simulation was different due to the different starting struc-
ures. The averaging of energies during the production phase of
ach simulation showed a standard deviation of less than 3.5%
or all snapshots and all pHs. The materials and methods section
escribes, that the restraint energy of a simulation can be used as
measure for the quality of the simulation. Fig. 5B shows a typical

estraint energy profile for 62 different orientations (on a surface

ith a ligand spacing of 15 Å at pH 5). The profile was calculated

y using reference simulations with the protein and the surface
nly as described earlier (see Eq. (3)). For most of the simulations,
he restraint energy of the 2-component system was lower than for
ndividual 1-component systems. Fig. 5C shows the restraint energy
tructures (10 Å spacing, pH 7, y = 0◦ , z = 0◦). (B and C) Restraint energy profiles for
restraint energy profile of the third snapshot reveals problems with the energetics

profile for the third snapshot under the same conditions, revealing
significant problems with the energies of the system such as close
contacts between two or more atoms (the second snapshot is not
shown because it was very similar to the first snapshot). Simulation
runs with such a high restraint energy profile were not consid-
ered in the averaging procedure. This averaging procedure had a
standard deviation of below 2% for all pHs. These high restraint
energies for some simulations seemed to correlate with the find-
ing, that one or more ligands flipped to the other side of the surface,
pointing away from the protein, rather than pointing towards the
protein. In these cases the restraint energies would be relatively
high as two of the three restrained atoms of these ligands were
far away from the position they were supposed to be kept at, and
the larger the distance to that position, the higher the restraint
energy is. Since these surface configurations did not represent a
configuration of a real adsorber surface (the polymer backbone of
the adsorber would make such a flipping impossible), we did not
include these simulations in any further calculations.

3.4. Binding orientations and ligand spacing effects

The simulation results for the surface with 10 Å ligand spacing
and pH values between 5 and 12 are shown in Fig. 6A–E.

The first noticeable finding at pH 5 was, that the electrostatic
energy strongly depended on the orientation of the protein: the
difference between the lowest energy (−7588 kcal/mol) and the
highest energy (−5321 kcal/mol) was roughly 2300 kcal/mol. The
second finding was, that there were apparently two sets of ori-
entations, that were unfavourable for a binding event: one set of
orientations around y = 75◦, z = 100◦ and one set around y = 115◦,
z = 220◦.
Although these orientations are unfavourable, the electrostatic
energy for the interaction was still negative and these orientations
had to be considered in the calculation of an average interaction
energy. Binding orientations 1 and 2 were the ones with the lowest
energy. Note that the orientation 1 was almost exactly the orienta-
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Fig. 6. Electrostatic energy profiles for different pH: (A) pH 5, (B) pH 7, (C) pH 9, (D) pH 11 and (E) pH 12 and a selection of the most favourable binding orientations (1–5).
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Fig. 7. Effects of (A) 10 Å, (B) 15 Å and (C) 20 Å ligand spaci

ion that was proposed from the experimental data [12] (see Fig. 5).
ith increasing pH to pH 7, the total electrostatic energy increased

y approximately +1400 kcal/mol, but the difference between the
owest and the highest energy remained roughly 2400 kcal/mol.
he first unfavourable binding site became less prominent due to
loss of negative charges at asparagines 52 and 101 located close

o the surface at this orientation. At pH 11, new unfavourable bind-
ng sites occurred due to changes in the charge distribution. At
H 12 areas of electrostatic repulsion appeared as expected. Nev-
rtheless, there were still regions in the plot showing a negative
lectrostatic energy, correlating well with the experimental find-
ng that lysozyme showed significant retention beyond its pI at pH
1.3 [12].

Note again, that the most prominent binding orientations (no.
+ 5) were close to the ones that were proposed from experimental
ata [12] (see Fig. 3).

Fig. 7A–C shows the effects of ligand spacing on both, the bind-
ng orientation and the electrostatic energy for the interaction
etween lysozyme and the surface at pH 11. With increasing lig-

nd spacing, the average electrostatic energy increased from about
1547 kcal/mol to about −97 kcal/mol. Apparently the electrostatic
inding becomes also less selective to the charge distribution as the
ifference between the lowest and the highest energy is reduced
rom about ∼ 1000 to ∼150 kcal/mol. This finding corresponds and

Fig. 8. Simulation results for (A) lysozyme and (B) ribonucl
the binding orientation of lysozyme here shown at pH 11.

explains reports claiming that ligand density influences not only
the maximum binding capacity but also the selectivity of adsorbent
materials. Wu and Walters [38] have shown, that with changing lig-
and density on a silica-based material, the elution order of lysozyme
and cytochrome changes.

The key message of this section is, that a whole variety of poten-
tial binding sites exists, some with a higher probability than others.
Clearly, the binding orientation greatly influences the energy for
the adsorption governing the probability of orientation. The simu-
lation results showed that the binding is far more complex than the
experimentally determined data suggested, but a good correlation
of both experimental and in silico data could be found.

3.5. Ribonuclease A as a second model protein

To evaluate the predictive power of the MD simulations, ribonu-
clease A was used as a second model protein. Ribonuclease is a
protein with a similar size (124 residues) and an estimated pI of
9.5 resulting in a positive net charge at pH 7. For the simulations,

the surface with a 10 Å ligand spacing of the same size as the surface
used for the simulations with lysozyme was chosen, representing
the system with the best correlation (as can be seen later). 62 differ-
ent orientations were analyzed and the results were interpolated
as described in the materials and methods section. The results are

ease A on a surface with 10 Å ligand spacing at pH 7.
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hown in Fig. 8 in comparison to simulations for lysozyme at pH
.

The calculated average electrostatic energy at pH 7 was
1950 kcal/mol compared to −5164 kcal/mol for lysozyme, so just
y looking at this energy, a significantly lower retention volume
as expected for both, isocratic and gradient elution.

.6. Correlation with elution studies: isocratic elution

In the previous section it was discussed that there are numerous
ossible binding sites differing in their electrostatic energies. The
uestion arose whether these electrostatic energies correlate not
nly with the adsorption behaviour but can also be used to predict
esorption behaviour. In order to predict the retention of a pro-
ein two prerequisites would be needed: (1) a general approach to
alculate an energy of adsorption from the simulation results and
2) a correlation between this interaction energy and the retention
f a protein. In order to calculate an average electrostatic energy of
nteraction the assumptions were made, that each orientation with
negative energy can possibly bind and lead to retention, while ori-
ntations showing a positive energy would not contribute, and that
he lower the energy is, the higher the contribution to the reten-
ion (for details see Section 2. To account for both, weighted average
nergies were calculated as described in the materials and methods
ection. As also discussed earlier, in the course of this study sim-
lations with three surfaces differing in their ligand spacing were
erformed. This section will focus on data generated with the 10 Å
urface, as they showed the best results. For measuring the affin-
ty of lysozyme at different pH isocratic elution experiments were
erformed at pH 5, 7, 9 and 11. The results are shown in Fig. 9.

The log(k) versus log(conductivity) plots showed a linear cor-
elation as described elsewhere [39,40]. The two parameters from
he isocratic elution experiments (k and �) were then correlated
ith a third parameter, the average electrostatic interaction energy

btained from MD simulations by multilinear regression. The gen-
rated three-dimensional correlation surface was of the form:

og(k) = a × log(�) + b × Ēelec + c (8)
here � is the conductivity and Ēelec
pH is the average electrostatic

nteraction energy from MD simulations. This correlation could
hen be used to calculate retention factors k for any given combina-
ion of buffer conductivity and interaction energy. Parameters a, b
nd c were determined with lysozyme data (isocratic elution exper-

ig. 10. (A) Predictive power of the multilinear regression. The correlation was good for a
f retention behaviour of ribonuclease A at pH 7 using MD simulations (dashed line) and
Fig. 9. Isocratic elution experiments with lysozyme at pH 5, 7, 9 and 11.

iments and MD simulations at different pH) and used to predict k
for ribonuclease A at pH 7. The results are shown in Fig. 10A.

Measured and predicted conductivities agreed well for all pHs,
except for pH 9. The parameters were: a = −6.867, b = −6.932 ×
10−4 mol/kcal and c = 6.884. It should be noted at this point, that
these parameters are probably only valid for the exact same MD
simulation setup. One possible explanation for that is an inaccurate
internal pKa calculation. There are several ways to estimate internal
pKa values of amino acids within a protein:

• Application of empirical rules.
• Solution of the Poisson–Boltzmann equation to account for influ-

ences by other charged amino acids within the structure.
• Calculation of the energy needed to remove a proton from the

protonated form of an amino acid within a protein structure.

In this paper, the second approach was used to prepare the

protein structure models for the MD simulations. It will be part
of future studies to investigate the effect of other approaches on
the MD simulation results. Fig. 10B shows the prediction result
for ribonuclease A at pH 7 and compares the result to a predic-

ll pH except pH 9. Ribonuclease A behaviour was also well predicted. (B) Prediction
the net charge (dotted line) of the protein.
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Fig. 12. Comparison between experimental results for the gradient elution of

and the protein was found to be strongly dependent on both, the
ig. 11. Correlation of the electrostatic energy for three different ligand spacings
nd the retention factor k̄ calculated from gradient elution studies at different pH.

ion based on the net charge of the protein. For the latter approach,
he same correlation was used as described above, except that the
et charge was used instead of the average electrostatic interac-
ion energy. The average deviation for the MD based prediction of
etention volumes between 1 and 100 CV (corresponding to the
ata shown in Fig. 10B) was 6% compared to about 450% for the net
harge based approach.

.7. Gradient elution

The linear solvent strength theory (LSS) was developed by
nyder et al. [39] and Dolan et al. [40] for reversed-phase chro-
atography and extended by Stout et al. for the use in ion-exchange

hromatography. According to this theory, gradient elution is not
uitable to directly draw information about protein affinities from
xperiments, as the salt concentration at point to protein elu-
ion strongly depends on the slope of the gradient. In contrast
o that, isocratic elution studies are under equilibrium conditions
nd should be used instead. The LSS theory offers a way to calcu-
ate average retention factors (k̄) from gradient elution data that
orrelate well with isocratic retention data. It also allows for the
alculation of the salt concentration (c̄) in the column when the pro-
ein peak has migrated half way through the column (for a detailed
escription please refer to the cited papers), which is then a suitable
arameter to describe protein affinities. We used a linear gradi-
nt ranging from 0 to 500 mM NaCl over 30 column volumes to
lute lysozyme at pHs between 5 and 12. We then used the data
o calculate k̄ and c̄, and correlated these with the average elec-
rostatic interaction energies from the MD simulations. The results
or k̄ are shown in Fig. 11. The 10 Å ligand spacing showed the best
orrelation results (R2 = 0.97).

Interestingly the correlation in Fig. 11 revealed, that at zero
lectrostatic interaction energy protein retention still occurred,
esulting in a k of 2.9. One explanation for the offset is that there
ere other forces contributing to retention of lysozyme: short-

anged van der Waals forces as well as hydrophobic effects. The
an der Waals forces were considerably low in our simulations (in
he range of −25 to −60 kcal/mol), did not show an obvious trend
nd did also not significantly reduce the offset. To calculate reli-

ble energies for the hydrophobic effects, simulations with implicit
ater molecules would be necessary. These kind of simulations

re very cost intensive in terms of computational time and were
ot performed in this study. A third explanation could be, that the
ribonuclease A and lysozyme with the predicted retention behaviour of ribonucle-
ase A using both, the LSS theory and a direct correlation with gradient elution data.
The predicted peaks were generated by simply shifting the center of the peak to an
elution conductivity according to the predictions.

surface used for the simulations was too small to account for all
electrostatic interactions, although apparently is was big enough
to show a good trend. A larger surface could lead to more negative
electrostatic energies at least for the favourable binding orienta-
tions which would lower the offset but which would also drastically
increase the computational time.

The linear correlation from Fig. 11 was used to calculate k̄ and c̄
for ribonuclease A: k̄ = 6.38 and c̄ = 70 mmol/l, resulting in a calcu-
lated retention volume of Vr = 11.8 ml. Both parameters were also
determined experimentally: k̄ = 6.04, c̄ = 64 mmol/l and Vr = 11.4 ml
(see Fig. 12).

Since there is a linear relationship between the conductivity at
point of elution of lysozyme and c̄ for k̄ < 2.6 (according to the LSS
theory for the gradient we used), we also directly correlated the
conductivity with the electrostatic interaction energy (R2 = 0.97,
correlation not shown) We calculated a conductivity at point of
elution of 16.3 mS/cm which referred to an elution volume of Vr =
10.9 ml (see Fig. 12). Both, the LSS based and the direct correlation
showed good results with a deviation of the retention volume of
about 0.5 ml. Note that the dashed lines representing the predicted
retention volumes were generated just by moving the ribonuclease
A elution peak to the predicted retention volumes. Shape and width
of the peaks were not predicted.

4. Conclusion and outlook

In this paper, a mechanistical model was introduced to describe
protein retention based on the calculation of electrostatic energies
from molecular mechanics simulations although it should be men-
tioned, that the relation of the electrostatic interaction energy to
the retention volume was made on an empirical basis. The binding
of lysozyme to a SP Sepharose FF matrix was simulated at 5 dif-
ferent pH values for 3 different ligand spacings. A surface with a
ligand spacing of 10 Å was most suitable to describe the adsorption
of lysozyme. A set of possible binding orientations at different pH
was in good agreement with experimental data obtained earlier.
The electrostatic energy for the interaction between the surface
binding orientation and the ligand density of the surface. The aver-
age electrostatic energies calculated from 62 different lysozyme
orientations were correlated with the conductivity at point of elu-
tion for each individual pH obtained by isocratic and linear gradient
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lution experiments. The correlation was best for the 10 Å ligand
pacing which was also the only ligand spacing that showed nega-
ive electrostatic potentials for the interaction with lysozyme at pH
2. All three correlations for the different ligand spacings revealed
-axis intercepts of k̄ > 2.9 (at zero electrostatic energy) which
ndicated, that there are other forces contributing to protein reten-
ion on SP Sepharose FF and that the electrostatic energies were

aybe underestimated due to the limited size of the surface used
or the simulations (∼100 Å), which will be part of future studies.
evertheless, the resulting correlation was good enough to suc-
essfully predict the retention behaviour of ribonuclease A with
deviation of 6% for isocratic elution and 4.4% (0.5 ml) for gradi-

nt elution. Future work aims at the evaluation of the model using
set of other proteins, especially larger ones to show its predic-

ive power. Furthermore it needs to be improved to account for
ydrophobic interactions in order to be used more generally (e.g.

or other adsorbers, etc.).
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